Quantum symmetry groups of Hilbert modules equipped with orthogonal filtrations
نویسندگان
چکیده
منابع مشابه
Multipliers of locally compact quantum groups via Hilbert C*-modules
A result of Gilbert shows that every completely bounded multiplier f of the Fourier algebra A(G) arises from a pair of bounded continuous maps α, β : G → K, where K is a Hilbert space, and f(s−1t) = (β(t)|α(s)) for all s, t ∈ G. We recast this in terms of adjointable operators acting between certain Hilbert C∗-modules, and show that an analogous construction works for completely bounded left mu...
متن کاملOn Orthogonal Systems in Hilbert C∗-modules
Analogues for Hilbert C∗-modules of classical results of Fourier series theory in Hilbert spaces are considered. Relations between different properties of orthogonal and orthonormal systems for Hilbert C∗-modules are studied with special attention paid on the differences with the well-known Hilbert space situation.
متن کاملDilations for $C^ast$-dynamical systems with abelian groups on Hilbert $C^ast$-modules
In this paper we investigate the dilations of completely positive definite representations of (C^ast)-dynamical systems with abelian groups on Hilbert (C^ast)-modules. We show that if ((mathcal{A}, G,alpha)) is a (C^ast)-dynamical system with (G) an abelian group, then every completely positive definite covariant representation ((pi,varphi,E)) of ((mathcal{A}, G,alpha)) on a Hilbert ...
متن کاملOrthogonal Polynomials in Connection with Quantum Groups
This is a survey of interpretations of q hypergeometric orthogonal polynomials on quantum groups The rst half of the paper gives general background on Hopf algebras and quantum groups The emphasis in the rest of the paper is on the SU quantum group An interpretation of little q Jacobi polynomials as matrix elements of its irreducible representations is presented In the last two sections new res...
متن کاملQuantum Hilbert matrices and orthogonal polynomials
Using the notion of quantum integers associated with a complex number q 6= 0, we define the quantum Hilbert matrix and various extensions. They are Hankel matrices corresponding to certain little q-Jacobi polynomials when |q| < 1, and for the special value q = (1 − √ 5)/(1 + √ 5) they are closely related to Hankel matrices of reciprocal Fibonacci numbers called Filbert matrices. We find a formu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2014
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2013.10.020